
Deep Dive into Client-Side Anti-Phishing: A Longitudinal Study
Bridging Academia and Industry

Rana Pourmohamad
Arizona State University
rpourmoh@asu.edu

Steven Wirsz
Arizona State University

swirsz@asu.edu

Adam Oest
Arizona State University

aoest@asu.edu

Tiffany Bao
Arizona State University

tbao@asu.edu

Yan Shoshitaishvili
Arizona State University

yan@asu.edu

Ruoyu Wang
Arizona State University

fishw@asu.edu

Adam Doupé
Arizona State University

doupe@asu.edu

Rida A. Bazzi
Arizona State University

bazzi@asu.edu

ABSTRACT
Client-side anti-phishing methods are crucial for safeguarding in-
dividuals against phishing attacks, offering a proactive approach
beyond traditional blocklisting strategies. This study expands the
scope to include a comprehensive evaluation of client-side anti-
phishing techniques within the Chrome browser, alongside an in-
depth analysis of academic research in the field of phishing over the
past five years. Our findings highlight the inherent limitations of
current client-side anti-phishing measures, which demonstrated a
detection rate of only 14% for phishing websites and blocked merely
10% of login-based phishing sites within the first hour, resulting in
a substantial false negative rate. Additionally, our analysis reveals
that attackers can readily circumvent these defenses by altering
the content of phishing websites. The study also critically assesses
recent academic contributions to understand their alignment and
potential integration with client-side anti-phishing frameworks.
Based on these insights, we propose targeted recommendations
to enhance the efficacy and responsiveness of the client-side anti-
phishing ecosystem, addressing the challenges of low detection
coverage, slow response times, and high rates of false negatives.

CCS CONCEPTS
• Security and privacy → Web application security; Phishing.

KEYWORDS
Client-side Anti-Phishing, Google SafeBrowsing, Blocklist

ACM Reference Format:
Rana Pourmohamad, Steven Wirsz, Adam Oest, Tiffany Bao, Yan Shoshi-
taishvili, Ruoyu Wang, Adam Doupé, and Rida A. Bazzi. 2024. Deep Dive
into Client-Side Anti-Phishing: A Longitudinal Study Bridging Academia
and Industry. In Proceedings of ACM Asia Conference on Computer and Com-
munications Security (ASIA CCS ’24). ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3634737.3657027

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3657027

1 INTRODUCTION
Phishing remains a significant threat, with a record number of
attacks reported in the third quarter of 2022 [6]. This rise in phishing
incidents highlights the ongoing challenge posed by sophisticated
phishing websites, kits, and evasion techniques like cloaking [25,
32, 54, 63]. These attacks not only result in direct financial losses for
victims but also cause reputational harm to impersonated entities
and threaten business infrastructures [75].

To combat phishing, the industry uses server-side blocklists,
which are highly accurate in identifying phishing sites with few
false positives. However, their effectiveness is limited by update
latency, allowing 75% of victims to access phishing pages before
they’re blocked [24, 55]. Additionally, blocklists are less effective
against targeted attacks like spear phishing [11]. The delay in up-
dating blocklists creates a vulnerability window, underscoring the
need for more timely solutions.

Client-side anti-phishing complements server-side blocklists by
detecting phishing directly in the browser, identifying suspicious
elements and patterns using machine learning [45]. This approach
effectively counters crawler-evasive tactics, delays in blocklist up-
dates, and targeted attacks like spear-phishing. Acting as a last line
of defense, client-side detection not only protects users but also
informs server-side blocklists about detected threats.

While blocklists are widely studied in the literature on anti-
phishing defenses [8, 24, 51, 52, 55, 56, 64, 69, 70, 76], less research
has focused on client-side anti-phishing. This work aims to (1)
understand the development and effectiveness of client-side anti-
phishing as a defense, and (2) examine its role in the broader anti-
phishing ecosystem. Additionally, it seeks to (3) comprehend the
constraints shaping client-side anti-phishing compared to server-
side defenses, and (4) use this insight to evaluate the applicability
of academically proposed anti-phishing techniques for client-side
detection.

In our work, we (1) conducted a three-year longitudinal study
on Chrome’s client-side anti-phishing, analyzing its evolution, ef-
fectiveness, and impact on server-side blocklisting. We also (2)
investigated how client-detected phishing data in Chrome is shared
with servers. Furthermore, we (3) identified design constraints in
Chrome’s client-side anti-phishing and (4) used these insights to
evaluate the suitability of recent academic phishing defense strate-
gies for client-side detection, focusing on research from the past
five years in major security conferences.

https://doi.org/10.1145/3634737.3657027
https://doi.org/10.1145/3634737.3657027

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

We focused this study on Chrome because it has the largest user
base globally, with approximately three billion active users. Addi-
tionally, results from Chrome’s client-side anti-phishing feeds into
the Google Safe Browsing blocklist that protects most mainstream
browsers, not only Chrome. Browsers that use Google Safe Brows-
ing blocklist include, in addition to Chrome, Firefox, Safari, and
Opera [67].

To understand Chrome’s client-side anti-phishing system, we
conducted a detailed manual analysis of its source code across ver-
sions 79(2019) to 108(2023) over three years. This included code
review and reverse engineering to comprehend its design and func-
tionality. Our analysis revealed the evolution of Chrome’s anti-
phishing features, including the introduction of Enhanced Protection
mode, visual features, and an updated detection model that operates
independently of Chrome’s core updates.
Classifier Evaluation.Weevaluated Chrome’s client-side anti-phishing
classifier using real-world phishing samples from PhishTank [15]
over three years. As shown in Section 4) this assessment revealed
that the classifier had a high rate of failure and false negatives in
detecting known phishing attacks.
Evaluating Client-side Classification Impact on Server-side Blocklist-
ing. We conducted a long-term experiment using the PhishFarm
framework [51] to assess the impact of client-side anti-phishing on
blocklist performance in Chrome. This involved testing 14 groups
of 35 phishing websites over seven days. Our May 2020 experiment
showed that client-side anti-phishing had little effect on block-
listing, with websites being blocklisted mainly when reported to
Google Safe Browsing. A follow-up experiment in January 2021
confirmed these findings.
Disclosure. In February 2021, we reported our findings about the
effectiveness of the anti-phishing features in Google Chrome to the
Chrome team. They agreed with our findings and said that they
were working on improving client-side anti-phishing detection.

We conducted experiments in May and July 2022, and April
2023 to assess server-side blocklisting’s impact. These experiments
showed that Chrome’s anti-phishing system had adopted a visual
classification model, enhancing detection but still struggling with
high failure rates and false negatives on PhishTank websites. By
April 2023, there was notable improvement: non-cloaked phishing
sites had a 10% blocklisting rate within the first hour and 51%
after seven days. Although, cloaked sites using evasion techniques
remained largely unblocked.

We discovered that phishing websites without a login form were
consistently not blocked by client-side detection. This was con-
firmed by a specific experiment focusing solely on such non-login
phishing sites. This suggests a potential overreliance of client-side
detection on login forms, either in visual or page features, indicating
a need for broader detection criteria.
Design Constraints and the Academic Work. Our study identified the
main constraints that dictate some of the design decisions of client-
side anti-phishing. The identified constraints are: (1) locality of
detection, (2) solution simplicity, (3) efficiency (4) generality. These
constraints make it possible for an attacker to completely bypass the
client-side detection system! For example, we verified that attackers
could bypass detection by adding an excessive amount of DOM
elements to a phishing page. Such bypasses are real threats and

have been used by real-world attackers—in one experiment, 34%
of PhishTime websites (i.e., known and already detected phishing
websites) bypassed detection from the classifier.

In our review of 25 academic papers on phishing frommajor secu-
rity conferences, we found that most of the proposed defenses don’t
adequately address client-side anti-phishing needs. They either fail
to meet the specific design constraints of client-side systems or are
not suitable for automatic phishing detection.

Our results paint a dire picture of the state of client-side anti-
phishing detection as currently deployed in practice and indicate
the need for more academic research on the topic. Our study is a
first step in this direction by providing an understanding and an
analysis of solution requirements for client side anti-phishing.

Rather than be disheartened by these results, the community
should take these findings as a challenge to design improved and
more robust client-side detection frameworks and mechanisms,
especially solutions that extend beyond the current state of affairs
in which it seems that the client-side detection is over fitting on a
single features: phishing websites with a login form.

In summary, in this paper we make the following contributions:
• We evaluated the evolution and effectiveness of Chrome’s
client-side anti-phishing classification model and the impact
of client-side anti-phishing in Chrome on server-side block-
lists over a period of three years. This is the first such effort
of this magnitude.

• We identified some of the constraints that seem to be guiding
the design of client side anti-phishing as deployed in Chrome.

• We studied the academic literature in major security confer-
ence over the last 5 years to assess the suitability of current
academic work for client-side anti-phishing. Our indicate
that current efforts are in general not suitable for client-side
anti-phishing and more work is needed.

The rest of this paper is organized as follows. Section 2 gives
an overview of phishing and the various strategies employed to
combat it. Section 3 studies the design and evolution of client-side
anti-phishing in Chrome. Section 4 presents an evaluation of the
performance and accuracy of client-side anti-phishing in Chrome.
Section 5 discusses the impact of client-side anti-phishing on the
anti-phishing ecosystem. Sections 3, 4 and 5 identify constraints on
client-side anti-phishing. Section 6 presents an analysis of academic
works for their suitability for client-side anti-phishing. Section 7
discusses the work limitations and our disclosure of our findings.
Section 8 covers related works and Section 9 concludes the paper.

2 BACKGROUND
Phishing involves attackers posing as trusted entities to extract
sensitive information. Defense strategies include blocklists (precise
but weak against new threats) and machine learning (capable of
identifying new attacks but prone to false results). Browsers like
Chrome and Edge combine these methods to balance accuracy and
adaptability [4, 5, 10, 18, 21, 27, 28, 48, 49, 51, 66].
Phishing Attacks. Phishing attacks proceed in three major stages:
In the first stage, attackers create a fake website that masquerades
as a trusted website. Phishers with little technical knowledge can
deploy these fake websites without technical knowledge by using
phishing kits (a set of software tools) [47].

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Analyze
Scores

3-Evaluating Client-side Impact on
Blocklisting(Section 5) Repeated in May 2020

and April 2023

2-Client-side Classification Effectiveness Evaluation
Experiment (Section 4)

Experiment
parameters

Log Network Traffic

Monitor BL in
Mobile & Desktop

GSB

Build
Chromium

Static &
Dynamic
Analysis

Reverse Engineering GSB

Design

Scorer
Formula

Content-based Anti-
phishing

Real-time Anti-
phishing

Visual-based
Antiphishing

Client-side Anti-phishing

Features

1- Studying Chrome Client-side Anti-
phishing (Section 3)

Log Chrome

Collect the
Scores

6 Versions of
Model

Not Classified

Extract
Scores

Analyze
Scores

Find the
Failures
Reason

Collect Not
Classified
websites

 Classified

Analyze CSD
Effect on BL

PhishTank
Synthetic

 Phishing Websites

Figure 1: Evaluation Framework for Chrome’s Client-Side Anti-Phishing Measures: Part 1 entails dynamic and static analysis
of Chromium source code; Part 2 involves the examination of Chrome debug logs, including ① analyzing scores to determine
the percentage of real phishing websites scored above the threshold, ② identifying the reasons for client-side failures, and ③

extracting scores of client-side anti-phishing on 100 real phishing websites across six versions of Chrome from September 2019
to April 2023; Part 3 investigates the influence of client-side anti-phishing on blocklisting performance, with investigations
initially conducted in May 2020 and revisited in April 2023.

In the second stage, attackers send messages to users to convince
them to click on the phishing website’s link and then use some
aspect of social engineering to deceive users to take action [16, 69]:
to provide the phishing websites with sensitive information. In
the third stage, phishers extract the victim’s information from the
phishing website and monetize that information [23].
Blocklists. Blocklists are the first layer of defense in browsers
against phishing attacks and they are enabled by default in all ma-
jor web browsers (Chrome, Firefox, Opera, Edge, and Safari), both
on desktop and mobile platforms. When users visit a malicious
website, blocklists are used to identify the malicious site and the
browser displays prominent warnings in place of the malicious
content. Blocklists were the first large-scale anti-phishing defense
deployed in browsers. Blocklists are updated server-side and prop-
agated to browsers. Researchers demonstrated that blocklists have
a significant effect on stopping phishing campaign [64]. However,
blocklists have noticeable shortcomings [55].

Although Google incorporated a real-time anti-phishing system
for detecting phishing URLs and improved the speed of Google Safe
Browsing (GSB) from the prior delay of “up to 30 minutes,” this
feature is not enabled by default, and it suffers from delay of caching
and updating the URL blocklist database, which provides attackers
a window of opportunity to launch their phishing campaign [57].
This change also applies to the mobile version of Chrome [57]. Due
to the short lifetime of phishing websites, a few hours of latency can
affect the blocklist performance in a significant way, and relying
on blocklisting can increase the risk to users [55, 64].
ML-based Anti-phishing. Machine Learning (ML)-based anti-
phishing solutions extract features of the web page or domain and
feed these features into a trained model to output a phishy-ness
score. However, studies have shown that ML-based classifiers are
susceptible to evasion attacks [3, 5, 7, 13, 30, 38, 40, 62]. Evasion
attacks are effective against practical ML-based classifiers, and, at
the same time, these attacks can be successfully launched without
changing the web page functionality and appearance [40]. Most

major browsers, including Chrome, Firefox, and Edge, implement
ML-based anti-phishing in the browser (client-side) [49, 74].

3 CHROME CLIENT-SIDE ANTI-PHISHING
We first aim to study the structure, design, and components of
Chrome’s client-side anti-phishing. To our knowledge, no prior
research has attempted to reverse engineer and document the en-
tire ecosystem. While previous studies have focused on analyzing
only the classifier component [41], we include all client-side anti-
phishing features, as well as the pre- and post-classification stages
and other anti-phishing components of the Chrome browser.

Figure 2 shows the Chrome anti-phishing ecosystem. In 1○, the
client-side classifier periodically downloads a visual-based model
and a content-based model, along with corresponding thresholds.
When the user visits a website, 2○ features for the two models are
extracted. After feeding the features to the model, the 3○ scores are
compared against the downloaded threshold, and if any score is
over the threshold the browser will display a warning to the user.
At the same time, the browser will report the URL, along with the
features (and other information) to Google Safe Browsing server-
side component. From there, server-side classification occurs (we
do not have visibility on how this is done), then, if it is determined
to be a phishing URL, then 4○ the URL is added to the Google Safe
Browsing blocklist. Finally, 5○ this blocklist is propagated to other
end-users browsers, thus protected them from the phishing URL.

Along with this high-level understanding, we performed a static
and dynamic analysis of Chromium’s implementation to extract
Chrome’s built-in classifier. Over our observation period of three
years we identified significant changes to Chrome’s client-side
anti-phishing, which have yet to be studied or evaluated in prior
work [41]. These changes include (1) new anti-phishing compo-
nents, (2) new features, (3) changes to overarching algorithms used
by the Chrome client-side anti-phishing ecosystem, (4) changes to

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

Score >=
Threshold

Phishing Webpage

Chrome Client-side classifier

Visual Model
&

Thresholds

Client-side Model
&

Threshold

Download Visual Model
Threshold list

Server-side
Classification

Google Safe Browsing Server-Side

Compute Visual Score Compute Score

Score >=
Threshold

Visual Elements Dom Feature URL Feature Term Feature

Yes
Yes

No No

Google Safe Browsing Client-Side

Blocklist

Download Model Threshold

Inside CSD Classification
From/To Server-side

 Website Content Shows to User
 Warning Banner Shows to User

Inside Server-side ConnectionsLegend

Figure 2: The Chrome anti-phishing ecosystem is composed of client-side and server-side components. First 1○, the Chrome
browser periodically downloads two client-side anti-phishingmachine learningmodels trained on the server side (a visual-based
model and a content-based model). 2○When a user visits a webpage, the browser then extracts features, including the DOM,
URL, and term features for the content-based model, as well as visual elements from the webpage. The browser calculates the
final scores for these two models and compares them with the provided thresholds. 3○ If the scores surpass the any threshold,
Chrome displays a warning page, and notifies the server-side component. 4○ If server-side classification confirms that the URL
is a phishing website, the blocklist is updated, and 5○ this updated blocklist is then propagated to other users’ browsers.

the client-side model, and (5) the classification threshold. In addi-
tion, we found that Chrome provides three different layers of secu-
rity: (1) no protection, (2) standard protection (the default setting),
and (3) enhanced protection, as shown in Table 1. Figure 3 provides
a detailed depiction of the current state of Chrome’s client-side
anti-phishing, where new changes are highlighted in yellow, and
shows the protection level, security policy, and mechanism behind
each of the layers. Figure 4 also presents a comprehensive timeline
of Chrome’s evolving anti-phishing technologies, capturing key
updates in 2008, 2012, 2019, 2020, and 2023.

3.1 Client-side Anti-phishing Classification
In our study, we embarked on a detailed examination of Chrome’s
client-side anti-phishing classification, acknowledging the signif-
icant challenge posed by the Chromium project’s extensive size,
encompassing over 10 million lines of code. Our methodical ap-
proach included:

1. Compiling the Extensive Chromium Codebase: We com-
piled the expansive Chromium source code on our systems, a critical
step in understanding the comprehensive structure andmechanisms
of such a large-scale browser project.

2. Static Analysis of the Chromium Codebase: We methodi-
cally analyzed the source code statically, which allowed us to iden-
tify potential weaknesses and improvement areas within this vast
codebase without executing the code.

3. Dynamic Analysis and Observation: Through dynamic
analysis, we observed the Chromium browser’s real-time behavior
in response to various phishing and legitimate websites.

4. Classifier Reverse-Engineering in a Complex Code En-
vironment: We undertook reverse-engineering of Chrome’s anti-
phishing classifier, a significant task given the extensive nature of
the Chromium code.

5. Log File and Network Traffic Analysis: Our study involved
analyzing Chrome’s log files and network traffic to gain insights
into the operational dynamics of the anti-phishing classifier within
this large software environment.

6.In-depth Examination of Chromium’s Source Code:We
conducted a thorough examination of the Chromium source code,
particularly focusing on the Google Safe Browsing components.

7.Verification and Comparative Analysis: We verified the
client-side anti-phishing functionality in both Chrome andChromium
and conducted a comparative analysis of the browser’s response to
a range of websites.

8. Identification of a Dual-Classification System: Our inves-
tigation revealed that Chrome’s anti-phishing system utilizes two
classifiers: a content-based classifier and a visual-based classifier,
within this extensive code environment.

9.Debugging the Extensive Chromium Code: Debugging the
Chromium source code for different website types was a key part
of our research, presenting unique challenges due to the project’s
scale.

The enormity of the Chromium project added a layer of com-
plexity to our analysis but also provided a unique opportunity to
explore the efficacy of Chrome’s anti-phishing strategies in a real-
world, large-scale software setting. This study not only illuminates
the intricate technical aspects of Chrome’s anti-phishing strategies
but also emphasizes the extensive efforts required to analyze such
a large and complex codebase for enhancing browser security.

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

3.1.1 Content-based Anti-phishing Classifier. The content-based
anti-phishing classifier is a crucial component of GSB’s client-side
anti-phishing classification system. This classifier employs a ma-
chine learning model, likely trained server-side and then deployed
on the client, to analyze local browser-based features of websites,
encompassing URL, DOM elements, and term-based attributes.

Once the features are extracted, the model calculates an anti-
phishing score, representing the probability that a given website is
a phishing website. The content-based classifier uses a threshold
from the server and compares the score with the threshold. If the
score is higher than the threshold, client-side detection shows a
warning page to the user and sends information about the URL
and the features to the Google Safe Browsing server-side. Table 7
in Appendix A provides a complete list of the features that the
classifier extracts and uses to calculate the phishing score. Our
study of these features show that they are all local to the client
side which means that they are locally available and the client
doesn’t need any remote resources to calculate them. This lead to
the identification of the first constraint that seems to guide the
design of client-side anti-phishing detection:

C1 - Locality: features used in phishing
detection should be local to the client.

3.1.2 Visual-based Anti-phishing Classifier. GSB’s client-side anti-
phishing classification system added a new and important compo-
nent: the visual-based anti-phishing classifier. This classifier focuses
on visual elements on the website rather than content-based fea-
tures, providing additional protection against phishing attempts.

This classifier operates similarly to the content-based classifier:
using a downloaded visual-based detection, which includes a list of
visual targets and thresholds for each target. The classifier then ex-
tracts visual elements from the page and calculates a score for each
one, comparing them to their respective thresholds. If at least one
score is higher than its threshold, the page is detected as phishing.
Visual classification or visual matchingin the client-side phishing
classifier, involves comparing visual elements of a webpage against
known phishing indicators or patterns. Here’s a basic overview of
how it works:

1. Image Processing: The software captures images or visual
elements from a webpage.

2. Feature Extraction: Key features from these images (like color
histograms, shapes, text, or even more abstract features) are ex-
tracted. This can include blurring the image to focus on general
shapes and colors rather than details.

3. Pattern Matching: The extracted features are then compared to
known patterns associated with phishing websites. These patterns
are derived from previously identified phishing attacks and can
include specific layouts, color schemes, or other visual cues.

4. Hashing and Comparison: Sometimes, images are hashed to
create a unique identifier, which can be compared against a database
of hashes from known phishing sites.

5. Decision Making: If the visual elements match closely enough
with known phishing indicators, the software may flag the page as
potentially malicious, triggering a warning or further analysis.

Local BL Check

Hash Check

Found

Classifier Initialized
Local Whitelist Check

Match Full Hash

RT Check

Phishing Detected?

Found

Not Found

Yes

Visual Elements
Extraction

Score >= Threshold

Feature Extraction

Any Score >= Related
Threshold

Score Computation

No

Not Found

Match

No Match

Chrome's setting:
Enhanced Protection
Standard Protection

No Protection

Website
Requested

Request
To/From

GSB

Request to
Renderer

Request to
CSD

No Match

Requested Website Warning Message

Chrome downloads:
CB Model

DB Model Threshold

Request
to/from

GSB Server

Visual Model

Enhanced
 Protection

Standard
Protection

No
Protection

Blacklist
Protection

New CSD
Components

Visual Threshold list

Visual Elements Score
Computation

Visual Classification
Initialized

YES

NO

Visual Classification
Initialized

Visual Elements
Extraction

Visual Elements Score
Computation

Figure 3: Chrome Client-side anti-phishing design. This di-
agram presents Chrome’s client-side anti-phishing in dif-
ferent layers of security (described in Table 1). The Blue
boxes are the new components of GSB that are not studied
in the previous works. The purple arrow shows the connec-
tion with the GSB server, the red arrow displays the “No
protection layer’s” mechanism, the Blue arrow pictures the
“Standard protection,” which is the default setting for the
Chrome browser, and the green arrow presents the mecha-
nism of the third security level, “Enhanced protection.”

3.1.3 Client-side Anti-phishing Classification Algorithm. The anti-
phishing analysis process includes three phases: pre-classification,
main classification, and after-classification.
Phase 1: Pre-classification.

Content-based anti-phishing classification starts with checks in
the pre-classification phase, which classifies only [X]HTML docu-
ments andHTTP/Swebsites. It does not classify any tab in incognito
mode, any URL allowlisted by enterprise policies, or any URL that
is in the local client-side detection allowlist database, and it does
not classify an IP address in the private IP ranges [61].
Phase 2: Main classification.

Once the pre-classification conditions aremet, Google Safe Brows-
ing’s content-based and visual-based anti-phishing classifiers begin
the process of computing scores based on the features and models
to see if the webpage is a likely phishing website. This process
consists of three steps:

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

Figure 4: Chronological Evolution of Chrome’s Anti-Phishing Techniques (2008-2023): This figure illustrates the progressive
enhancement of Google Safe Browsing’s client-side anti-phishing mechanisms, highlighting key developments in five major
iterations - 2008, 2012, 2019, 2020, and 2023. Each version marks a significant advancement in combating phishing threats,
showcasing Google’s commitment to evolving cybersecurity measures.

First, if not already present, the system downloads the trained
machine learning models for both the content-based and visual-
based classifiers from the Google Safe Browsing server.

Next, for content-based classification, the system extracts URL,
DOM, and term features from the visited website, while for visual-
based classification, it extracts visual features. They have 500 ms
threshold for feature extraction, and beyond this time the classifi-
cation don’t start. Finally, the system runs the scorer and calculates
the final score for the content-based classifier and each of the ex-
tracted visual elements. Our study of the models used for client-side
anti-phishing detection in Chrome lead us to identify a second con-
straint that seems to be essential for client-side solutions:

C2 - Simplicity: Machine learning models
used in phishing detection should be simple.

We realize that simplicity is not precisely defined, but it seems clear
that it is an important consideration in client-side solutions.
Phase 3: Post-classification.

Once the main classification process is complete, the website will
be identified as a potential phishing site if either of the following
conditions is met: (1) the computed content-based phishy-ness score
exceeds the threshold or (2) the visual-based scores for at least one
visual element exceed the related threshold.

If any classifier determines that a website is potentially phish-
ing, Chrome extracts features. These features include 21 different
attributes that are listed in Table 6 in Appendix A. Chrome appends
these features to the phishing URL and sends it to the server for
further evaluation of the suspicious website.

While we do not have visibility into the server-side component,
we suspect that the server-side will analyze the report, potentially
visit the phishing URL, and make a final decision about whether
the page is a phishing site or not.

If the server-side determines that the page is a phishing site,
it blocks access and adds the site to the Google Safe Browsing
blocklists. This information is then shared with all browsers that
use the this blocklist, such as Google Chrome, Mozilla Firefox, and
Apple Safari.

Security Level Blocklist Content
based

Visual
based Real-time

No Protection ✓ ✗ ✗ ✗

Standard Protection (Default) ✓ ✓ ✓ ✗

Advanced Protection ✓ ✓ ✓ ✓

Table 1: Chrome security levels. Chrome provides three levels
of security, and each level uses related anti-phishing compo-
nents.

3.2 Real-time Anti-phishing
In September 2019, Chrome version 79 was released with a new
defense technique, called real-time anti-phishing, to address the
blocklist latency problem and prevent attackers from exploiting the
30-minute blocklist refresh time. As of this writing, real-time anti-
phishing is enabled only at the Advanced Protection level (shown
in Table 1). We find that real-time anti-phishing works as follows:
Chrome first checks visited websites against the allowlist database
on the user’s system containing thousands of popular websites
known to be safe. If the visited website’s URL does not match with
the local whitelist database, then the browser sends the URL to
the Google Safe Browsing server to check if the user is visiting a
malicious website [20, 22].

4 CLASSIFIER EVALUATION
Our study evaluated Chrome’s client-side anti-phishing classifier
using real phishing samples from PhishTank [15]. Our preliminary
findings revealed a high failure rate and many false positives in its
detection capabilities. This led to a multi-year assessment focusing
solely on the classifier’s ability to detect phishing websites, crucial
for user protection. The scope excluded an analysis of the false
positive rate.

The experiment involved visiting verified phishingwebsites from
PhishTank and testing them against the classifier. Figure 6 shows
that results: only 66% of the phishing websites even underwent
classification (they failed in the Pre-classification stage (Section 4.2),
and we will describe the root cause in Section 4.2). In May 2020,
using 300 phishing websites, we found that only 66% were even
classified, and out of those, just 14% were correctly identified as

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Figure 5: The result of classification of the content-based
model across six versions of Chrome. For each experiment,
we selected 100 new phishing websites from PhishTank and
evaluated them against the model. The range of scores (the
classifier’s result) is different in these versions as well as
the threshold. The number of the scores above the line that
connected the thresholds are detected as phishing websites.
The False Negative ratio is indicated above each box in the
figure. For instance, in May 2020, the Client-side model had
a False Negative ratio of 96%.

phishing, indicating a high false negative rate. The detailed results
and analysis of the pre-classification failures are elaborated in a
subsequent section.
BrowserValidation Experiment.Because the classifier was based
on Chromium (discussed in Section 3), we conduct a follow-up
experiment to check for any differences between client-side anti-
phishing models in Chrome and Chromium. In this experiment,
we visited 100 additional (new) phishing websites (sourced from
PhishTank) using both Chrome and Chromium. The classification
outcomes were identical in both browsers, which confirmed that
classifiers in Chrome and Chromium function in similar manners
and validated our understanding of the client-side anti-phishing
system in Chrome (and Chromium).

4.1 Longitudinal Model Drift
We continued to analyze the client-side classification in Chromium
to understand how the model changed over time. In September 2020,
we noticed a shift in classification results. By reverse engineering
the updated source code, we identified changes to the content-based
anti-phishing model and the classification algorithm, including a
significant adjustment to the phishy-ness threshold. The previous
model used a hard-coded threshold of 0.5, while the new model
employed a dynamic threshold, which was tuned by GSB and sent
to the client.

Therefore, during our observation period, each time the content-
based classifier model changed, we re-evaluated its performance
on 100 new phishing websites from PhishTank. This approach
evaluates the classifier model’s effectiveness when encountering
new phishing websites.

Figure 6: Classification results categories from the May 2020
classification experiment. This figure presents the percent-
age of the 300 phishing websites visited, on which Chrome
performs classification, the resulting classification percent-
ages, and the portion of websites that bypass content-based
anti-phishing. Additionally, it illustrates the reasons for clas-
sification failure.

Figure 5 shows the results of six different experiments on the
content-based. Before September 2020, the classifier used by Google
Chrome used a hard-coded threshold of 0.5 (the blue line in Figure 5).
However, in subsequent versions, the threshold was retrieved from
the server and downloaded along with the classification model. We
observed that the downloaded thresholds varied across different
versions, with values of 0.8999976, 0.2, and a subsequent return to
0.5 observed in the last four models.

The results indicate that the number of false negative scores (
scores below the threshold) remains noticeably high, even after
tuning the threshold. For instance, the second new threshold was
0.2, and the scores accordingly changed with the changed model.
As Figure 5 shows, accuracy in the new version of the model with
0.5 thresholds is improved from 0.02% in the earlier model with the
static threshold to 0.14% in the last model.

4.2 Exploring Failures in Client-Side Detection
Beyond Classifiers

In our initial experiment of 300 phishing websites, 34% bypassed
the classifier completely, which is shown in Figure 6. To investigate
these failures, we analyzed and categorized the Chrome log files,
and matched with the Chromium source code. In some cases, we
cannot determine the reason due to incomplete logs or ambiguous
results, and we mark these as “Unknown Reasons.”

We discover significant failures that can happen before the clas-
sification process, and we call these failures avoidances. Therefore,
even if Chrome had a perfect client-side classification model, it
would still fail to detect over 34% phishing websites because of
these avoidances. We found four reasons for classification failures:
model loading failure (37%), web page recapturing issues or not
being reloaded (22%), DOM features extraction failure (11%), and
scorer loading failure (7%). The failures caused byDOM features tim-
ing out indicate that attackers can bypass client-side classification,
even if the classifier’s model was perfectly accurate. The extraction

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

of DOM and Term features is constrained by a 500-millisecond
timeout. If this duration is exceeded, classification is aborted, poten-
tially allowing exploitation by attackers. The existence of a timeout
of a short duration even at the expense of increased vulnerabil-
ity to phishing attacks lead us to identify a third constraint that
seems to guide the design of the client-side anti-phishing solution
in Chrome:

C3 - Efficiency: The speed of detection is
paramount for a client-side phishing detection

5 EVALUATION OF CLIENT-SIDE EFFECT ON
BLOCKLISTING

Now that we have evaluated the client-side classification in Sec-
tion 4, we turn our attention to analyzing the impact of client-side
classification on blocklisting. In essence, this allows us to shed light
on the outcomes of the server-side classification (Steps 3○ and 4○
in Figure 2) process, which ultimately measures how client-side
classification protects other users.

5.1 Methodology
To evaluate blocklist performance, we used two main metrics: (Dis-
covery) (the provider’s ability to identify new suspected URLs) and
(Detection) (the provider’s ability to blocklist discovered URLs), fur-
ther broken down into Coverage and Speed [52] as sub-metrics.
Our methodology, primarily focused on Google Safe Browsing, is
also applicable to other providers like Microsoft SmartScreen and
Opera’s protection services.

We utilized the PhishFarm framework1 from the authors [51],
modifying it for our experiments. We generated various inert phish-
ing websites using a phishing kit, categorizing them based on the
experimental conditions. Each site was hosted on a new, unique
.com domain, with naming structures varying per group. We then
tracked the time taken for these sites to be blocklisted on Chrome
(both mobile and desktop), post-reporting to Google Safe Browsing
or upon client-side detection, over a seven-day period.

5.2 Blocklist Experiments
In our comprehensive study, we conducted three key experiments
to assess the efficacy of client-side anti-phishing methods in block-
listing, involving a total of 735 unique phishing websites.

5.2.1 May 2020 Experiment: For our initial experiment, we created
14 different experimental groups (with 35 URLs in each experimen-
tal group) that varied the following settings: random URLs vs suspi-
cious URLs (impersonating brand names), content-based detection
enabled or disabled, real-time phishing enabled or disabled, if the
URL was reported directly to Google Safe Browsing, and if cloaking
evasion technique was used. In addition, all websites were from one
phishing kit that impersonated one brand as shown in Table 2. As
shown in Table 2, this initial experiment revealed a major weakness
in the client-side anti-phishing ecosystem. The phishing websites
were only blocklisted if they were reported directly to Google Safe

1https://phishfarm-project.com

Browsing (GSB), and the content-based classification and real-time
anti-phishing did not have any impact on the blocklisting process.

5.2.2 2021 Replication Studies: Following up on these findings,
we conducted two smaller studies in 2021, confirming the limited
impact of content-based and real-time anti-phishing on blocklisting.
These studies led to an acknowledgment from Google and indicated
ongoing improvements in their detection mechanisms.

We communicated our findings to Google in February 2021, who
acknowledged them and indicated efforts to enhance client-side
anti-phishing. However, a subsequent study in July 2021 showed
that the issues still remained.

5.2.3 April 2023 Follow-Up: We conducted this experiment in April
2023, and Table 3 shows the seven different experimental condi-
tions. In this experiment we also added the new phishing trend that
we observed: websites that don’t show a login form immediately.
These include two types: traditional login websites and non-login
sites, where users are prompted to scan a QR code or perform an
action to access the login. We also used three different phishing
kits to deploy the phishing websites that spoofed three different
types of websites (two normal and one non-login phishing). The
results pointed to ongoing challenges in effectively detecting and
blocklisting phishing sites without direct reporting. For this exper-
iment, we focused only on non-reporting conditions, and varied:
random URLs vs suspicious URLs, Standard Protection vs Enhanced
Protection, cloaking, and type of phishing page. Standard protec-
tion now includes both content-based and visual-based classifiers,
while enhanced protection still includes standard protection plus
real-time protection. We conducted this experiment in April 2023,
and Table 3 shows the seven different experimental conditions.

Overall, our experiments revealed critical insights into the limi-
tations and evolution of client-side anti-phishing strategies in the
face of sophisticated phishing tactics.

Blocklist Coverage Experiments. Client-side detectionwithGoogle
Safe Browsing blocked about half of phishing attacks in non-cloaking
scenarios. However, as indicated in latency graphs (Figure 9 and
Figure 10), these blocks were delayed, with none within the first
30 minutes and only 10% within the first hour. Despite this latency,
75% of victims still accessed the phishing sites. This marks a signif-
icant improvement from our initial experiments where client-side
detection had zero impact on blocklist coverage.

C4 - Generality: Client-side anti-phishing
solutions should be general and not restricted

to specific attacks.

However, client-side measures were ineffective against cloaked
phishing sites, underscoring the ease with which attackers can
bypass these defenses. Notably, even the latest client-side detection
failed to identify non-login phishing sites, highlighting the need
for further advancements in anti-phishing technologies.

A key observation from our May 2020 experiment (Table 2)
was the lack of blocklisting for cloaked sites on mobile Chrome,
unlike desktop Chrome. This inconsistency, also noted by Oest et
al. [51] 2018 in their research, persisted in our study. Our latest

https://phishfarm-project.com

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Experiment Settings
Total Number of

Websites per group

Number of
blocklisted
websites:

Desktop Chrome

Number of
blocklisted
websites:

Mobile Chrome
Group ID URL CB RT Report Evasion Technique

1 Rand ✓ ✗ ✗ Cloaking 35 0 0
2 Rand ✓ ✗ ✗ No Cloaking 35 0 0
3 Susp ✓ ✗ ✗ No Cloaking 35 0 0
4 Rand ✓ ✓ ✗ No Cloaking 35 0 0
5 Susp ✓ ✓ ✗ Cloaking 35 1 0
6 Rand ✓ ✓ ✓ No Cloaking 35 33 35
7 Susp ✗ ✓ ✓ Cloaking 35 34 0
8 Susp ✓ ✓ ✓ No Cloaking 35 34 31
9 Susp ✓ ✓ ✓ Cloaking 35 34 33
10 Rand ✓ ✗ ✓ Cloaking 35 35 0
11 Susp ✓ ✗ ✓ Cloaking 35 35 2
12 Rand ✓ ✗ ✓ No Cloaking 35 35 33
13 Rand ✗ ✓ ✓ Cloaking 35 35 0
14 Rand ✗ ✓ ✓ No Cloaking 35 35 31

Table 2: May 2020 Evaluation of Blocklist Effectiveness for Unreported Phishing Websites The table displays the blocklist
coverage performance for 14 distinct groups of phishing websites with login forms. The first five columns detail the varying
experiment settings, encompassing URL type, Standard Protection, Enhanced Protection, Reporting Status, and the Evasion
Techniques employed. Each experiment involves 35 websites, as indicated in column six. The final two columns demonstrate
the blocklist coverage results for desktop and mobile Chrome browser platforms.

Experiment settings

Group ID URL Standard
Protection

Enhanced
Protection

Evasion
Techniques

Phishing
Type

Websites
per Group

Desktop Chrome
Blocklisted Sites

Mobile Chrome
Blocklisted Sites

1 Rand ✓ ✗ Cloaking Login 35 1 1
2 Rand ✓ ✗ No cloaking Login 35 18 18
3 Susp ✓ ✗ No cloaking Login 35 16 16
4 Rand ✗ ✓ No Cloaking Login 35 23 23
5 Susp ✗ ✓ Cloaking Login 35 3 3
6 Rand ✓ ✗ No Cloaking Non-Login 35 0 0
7 Rand ✗ ✓ No Cloaking Non-Login 35 0 0

Table 3: April 2023 Blocklist Efficacy Assessment for not reported Phishing Websites The table presents the blocklist coverage
for seven unique phishing website categories not submitted to blocklist providers and detected exclusively via client-side
methods. Organized into seven columns, the table outlines experiment parameters, including URL type, Standard and Enhanced
Protection measures, Evasion Techniques used, and the classification of phishing websites (with or without a login page). The
final two columns demonstrate the blocklist coverage effectiveness on both desktop and mobile Chrome browser platforms.

experiment in April 2023, however, shows Google has achieved
consistent coverage between mobile and desktop browsers, though
with varying response speeds.

Blocklist Speed Experiments. The goal of client-side anti-phishing
is to minimize blocklist update delays. In May 2020, median block-
listing times were 88 minutes for desktop Chrome and 3 hours for
mobile Chrome, with unreported sites not contributing to blocklist-
ing. Our final experiment showed an improved median blocklisting
time of 110 minutes for client-detected sites, still posing a risk
for phishing attacks. This duration allows ample opportunity for
attackers [55]. Figures 7 and 8 display these blocklisting speeds.

5.3 Effectiveness of Real-time Anti-phishing
Google claims that the new real-time anti-phishing component
(September 2019) improves the detection of un-seen phishing web-
sites by 30%. Our results demonstrate that even this additional
component do not efficiently protect the user against new phishing
websites. Blocklist experiment results for groups 5 and 6 (as shown
in Table 2) for 70 phishing websites in these two groups, real-time
anti-phishing does not affect the blocklisting process. For these

70 phishing websites, Chrome with content-based and real-time
anti-phishing methods enabled blocklisted one phishing website.

6 ACADEMICWORKS: A FIVE-YEAR REVIEW
We conducted a review of 25 papers from major security confer-
ences, from 2018 to 2023, including S&P, Usenix, CCS, NDSS, Asi-
aCCS, ACM journals, and the WIC conference, representing a sig-
nificant body of work in the field. The chosen conferences are
known for rigorous peer-review processes and for hosting pioneer-
ing works in security, making them ideal sources for our analysis.
Our review evaluated each of these papers against the four con-
straints that we identified for client-side anti-phishing solutions
and which we already highlighted in green boxes in the paper. Our
objective was to evaluate the applicability and relevance of these
academic findings to the practical needs of current industrial client-
side anti-phishing solutions, thereby bridging the gap between
theoretical research and practical application.

We divided the papers into two categories: those proposing phish-
ing detection models and those that did not. For those proposing
models, we further analyzed their suitability for client-side detec-
tion based on the four constraints that we identified:

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

Figure 7: Mobile blocklisting Performance. This figure shows
the delay between initial reporting using the mobile Chrome
browser to blocking for five different groups ofwebsites. Each
group was set up differently. For example, the group with
websites that had random URLs used server-side cloaking
and were reported to blocklist entities when visited from
mobile Chrome with content-based anti-phishing enabled
was blocked faster than the other groups. This information
is from the initial experiment conducted in May 2020.

1. Locality: This criterion assesses methods that necessitate
resources beyond local capabilities, encompassing features unavail-
able locally, such as domain provider information. The method
outlined in paper [34], for instance, stands out in terms of efficiency
and accuracy. Nonetheless, it requires external resources, like do-
main provider information, to conduct the classification process.

2. Simplicity: This constraint evaluates the complexity of ma-
chine learning methods in the proposed anti-phishing solutions. For
instance, the Phishpedia [42] model demonstrates high accuracy
and minimal runtime overhead. However, despite these strengths,
deep learning models like Phishpedia often encounter challenges in
real-world scenarios, particularly regarding their adaptability and
complexity in uncontrolled environments. This highlights the need
for solutions that balance complexity and practical applicability.

3. Efficiency: This aspect evaluates the detection speed and the
model’s size. The benchmark for Chrome’s anti-phishing feature
is a 500 ms response time. However, certain studies, such as [77],
report a higher time overhead for detection: approximately 800 ms
for benign websites and 3000 ms for malicious sites.

4. Generality: This aspect assesses if the anti-phishing methods
are universally applicable or tailored to specific phishing types,
such as financial phishing. For instance, the authors referenced
in [29] offer key insights on browser-level defenses, focusing pri-
marily on IDN-based phishing. However, this specialized approach
may not fully integrate with Google Chrome’s wider anti-phishing

Figure 8: Desktop blocklisting Performance. This figure
shows the delay between initial reporting using the desk-
top Chrome browser to blocking for nine different groups
of websites that we did in May 2020. Each group had a dif-
ferent setup that you can see in Table 2. For instance, group
8, which had websites with suspect URLs, used cloaking on
the server-side and reported to blocklist entities when vis-
ited from desktop Chrome with anti-phishing enabled, were
blocked faster than other groups.

strategies, which are designed to address a broader range of phish-
ing threats. Beside the specific attack, some papers [71] focus on
specific platform like android.

Some of the reviewed papers do not directly propose anti-phishing
solutions, but still contributes to the field of anti-phishing research.
For instance, the study presented in [53] focuses on aspects related
to phishing but doesn’t outline a specific anti-phishing method.
Despite this, the findings from ’PhishTime’ could offer valuable
insights to enhance anti-phishing measures in browsers like Google
Chrome, particularly in assessing the efficacy of blocklists. How-
ever, the integration and relevance of these insights would largely
depend on how they align with Google Chrome’s existing anti-
phishing strategies and implementation frameworks.

A summary of the evaluations appear in Tables 4 and 5. The
current state of client-side anti-phishing detection, as observed
in practice, is concerning and highlights the need for more fo-
cused academic research in this area. Our analysis is a step towards
understanding the solution requirements for effective client-side
anti-phishing. These challenges should motivate the community
to design more robust and innovative client-side detection frame-
works, moving beyond the existing paradigms that appear to be
limited in addressing evolving phishing threats.

7 DISCUSSION
Our study’s primary purpose was to evaluate content-based anti-
phishing, and our initial experiment revealed surprising results
in this regard. Our study in May 2020 found that the client-side
anti-phishing system aimed to reduce the time lag in blocklists

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Figure 9: Desktop blocklisting Performance in the latest experiment in April 2023. This figure shows the delay between initial
reporting using the desktop Chrome browser to blocking for our final experiments that we did in April 2023. We divided the
websites into five different groups; each group had a different setup that you can see in Table 2.

Not Efficient Not Simple Not Local Not General Not Relevant
[50] [77] [39] [42] [76] [33] [34] [36] [35] [56] [12] [29] [37] [72] [26] [71] [9] [14] [17] [43] [53] [58] [59] [60] [65]

Table 4: Suitability of recent academic works for client-side anti-phishing

Not Efficient Not Simple Not Local Not General
High Overhead (speed) [77] Hybrid Deep Learning method [42] Not-local detection [34] [36] [35] Specific for Crypto Phishing [12]
Resource Efficiency [50] Complexity of Cloaking Detection features [76] Needs Human Interaction [33] Specific for Financial Phishing [72]

Use Multiple Models [39] Search Engine Query needs [56] Specific for inter-organization phishing [37]
Specific for Android Platform [71]
Specific for IDN attacks [29]
Specific for Email system [26] [72]

c

Table 5: Categorization of Academic Research Based on Anti-Phishing Criteria

protecting users from new phishing attacks. However, our subse-
quent experiments conducted in April 2023 showed that, despite the
improvements made to the system by Google, client-side detection
only led to a 10% increase in the number of websites blocklisted
within the first hour. This implies that there is still scope for im-
provement in the overall anti-phishing ecosystem.

However, our findings show that for phishing websites that are
reported without cloaking techniques, content-based anti-phishing
can accelerate blocklisting.

Privacy is also another unsolved challenge in Chrome’s client-
side anti-phishing. Google Safe Browsing client-side anti-phishing
claims that it protects users’ sensitive information [20]; however,
our experiment shows that content-based anti-phishing and pass-
word protection sends a request to the server that includes the
visited URL and the list of URLs with the same stored passwords.
These URLs might be transmitting sensitive information in the
context of a false positive classification result.

Our findings could be used to improve content-based classifica-
tion accuracy. Continuous monitoring of recent phishing websites’

structure—including URLs and the content—training the related
machine-learning model, and refining the classification algorithm
with this data, can further improve content-based detection.

Our empirical blocklist experiments on Chrome and GSB could
be adapted to analyze other modern browsers and threats, including
spam filters and malware.

7.1 Limitations
Source Data.Our study highlighted weaknesses in Chrome’s client-
side anti-phishing ecosystem, but it’s important to consider the
limitations of our analysis. Initially, we focused on a single organi-
zation, potentially biasing our findings. We addressed this in our
final experiment by including more brands and phishing styles,
ensuring diverse data and reducing bias. Source Classifier. We
used Chromium’s open-source code for evaluating Chrome’s anti-
phishing defenses, as Chrome isn’t open-source, but this didn’t
affect our results due to the presence of the Google Safe Browsing
system in both. Reporting. Our reporting was based on a single

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

Figure 10: Mobile Blocklisting Performance in the latest ex-
periment in April 2023. This figure shows the delay between
initial reporting using the mobile Chrome browser to block-
ing for our final experiments on the mobile Chrome browser
in April 2023. We divided the websites into five different
groups; each group had a different setup (see Table 2.)

submission per phishing site, which might differ from the mul-
tiple reports that could occur in real-world scenarios. Although
our study revealed Chrome’s client-side anti-phishing ecosystem’s
weaknesses in the real world, our analysis should be considered
along with its limitations.

7.2 Disclosure
In February 2021, we reported to Google the shortcomings in
content-based anti-phishing and mobile blocklisting gaps. Google
recognized these problems and was working on enhancing their
client-side anti-phishing. Later evaluations showed some improve-
ments in the classifier, but our results in Figure 5, still highlighted
persistent weaknesses in content-based anti-phishing.

8 RELATEDWORK
Our study represents the first thorough evaluation of client-side
content-based anti-phishing, including empirical performance anal-
ysis and bridging the gap between industry and academia. Unlike
prior research focusing on blocklisting [1, 64, 73], browser secu-
rity warnings [2, 16, 19, 68], and anti-phishing toolbars [31, 44, 46,
70, 75], our work distinctively assesses the efficacy of in-browser
classifiers alongside blocklisting strategies, addressing a previously
unexplored area in the field.

Oest et al. [51] assessed the timeliness of anti-phishing blocklists
and the efficacy of evasion techniques. They used the PhishFarm
framework to test cloaking techniques against anti-phishing entities
by deploying fake phishing websites. Similarly, we adapted that

framework to evaluate content-based and real-time anti-phishing
effectiveness in major web browsers.

Liang et al. [41] demonstrated the vulnerabilities of Chrome’s
content-based classifier by showing how feature modifications
could drastically alter a site’s phishing score, though they didn’t as-
sess its broader ecosystem impacts. In contrast, our study uncovers
new attack methods that evade classification entirely.

Lei et al. [40] assessed Chrome’s phishing detection in 2019,
focusing on evasion attacks and proposing methods to increase
classifier robustness. Our research extends this by empirically ex-
amining client-side anti-phishing’s effects on blocklist coverage
and response times.

Oest et al. [55] studied the lifecycle of large-scale phishing at-
tacks, identifying detection gaps and the timing of attacks. They
introduced the ’Golden Hour’ concept, finding that rapid blocklist-
ing is crucial to mitigate the impact of these attacks and emphasized
the importance of effective content-based anti-phishing in the early
stages to protect potential victims.

9 CONCLUSION
In our study, we analyzed the effectiveness of client-side classifica-
tion in detecting never-before-seen phishing websites. We assessed
the impact of client-side detection on facilitating blocklisting from
May 2020 to April 2023. Our analysis encompassed the strengths and
weaknesses of the Google Safe Browsing client-side anti-phishing
ecosystem, including blocklists, content-based, visual-based, and
real-time detection, which are components of different layers of
protection in Chrome, including standard protection and enhanced
protection. Through a longitudinal evaluation, we aimed to com-
prehend how client-side detection could be enhanced to better
safeguard end-users from new and evolving phishing attacks.8

After reporting our findings to Google and their subsequent com-
mitment to making improvements, the final experiment conducted
in April 2023 showed an increase of zero in blocklisting efficacy
in the first 30 minutes and only 10% in the first hour, with a 51%
increase over seven days. While this improvement was notewor-
thy, the system still encountered difficulties in effectively blocking
new and evolving phishing attacks, particularly those that did not
include login pages. Our study specifically tested non-login phish-
ing websites, highlighting the challenges in detecting these types
of attacks. Additionally, there are still design vulnerabilities that
attackers could potentially exploit to bypass client-side detection
measures.

Our study of the evolution of Chrome’s client-side anti-phishing
and our identification of constraints that seem to mandate some
design decisions was useful in understanding proposed solutions
in the academic literature as possible improvements for practically
deployed client-side anti-phishing systems such as Chrome. Our
academic literature review indicates that there is need for more
work and attention from academia to the client-side anti-phishing
problem. While the constraints that we identified are not the last
word on the unavoidable constraints that practical systems must
be contend with, we believe that they are an important first step
towards identifying such constraints.

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

10 ACKNOWLEDGEMENTS
This material is based upon work supported by the Advanced Re-
search Projects Agency for Health (ARPA-H) under Contract No.
SP4701-23-C-0074 and the Defense Advanced Research Projects
Agency (DARPA) and Naval Information Warfare Center Pacific
(NIWC Pacific) under Contracts No. N66001-22-C-4026 and No.
N66001-20-C-4020. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of ARPA-H, DARPA, or
NIWIC Pacific.

REFERENCES
[1] R Abrams, Orlando Barrera, and J Pathak. 2013. Browser Security Comparative

Analysis. NSS Labs (2013).
[2] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in warningland: A large-

scale field study of browser security warning effectiveness. In 22nd {USENIX}
Security Symposium ({USENIX} Security 13). 257–272.

[3] Ahmed AlEroud and George Karabatis. 2020. Bypassing Detection of URL-
based Phishing Attacks Using Generative Adversarial Deep Neural Networks. In
Proceedings of the Sixth International Workshop on Security and Privacy Analytics.
53–60.

[4] Ahmed Aleroud and Lina Zhou. 2017. Phishing environments, techniques, and
countermeasures: A survey. Computers & Security 68 (2017), 160–196.

[5] Charles Anderson. 2019. Adversarial Sampling Attacks Against Phishing Detec-
tion. In Data and Applications Security and Privacy XXXIII: 33rd Annual IFIP WG
11.3 Conference, DBSec 2019, Charleston, SC, USA, July 15–17, 2019, Proceedings,
Vol. 11559. Springer, 83.

[6] Anti-Phishing Working Group (APWG). 2022. Phishing Activity Trends Report:
Q3 2022. https://docs.apwg.org/reports/apwg_trends_report_q3_2022.pdf. (2022).
Accessed on April 20, 2023.

[7] Giovanni Apruzzese, Mauro Conti, and Ying Yuan. 2022. SpacePhish: The Evasion-
space of Adversarial Attacks against Phishing Website Detectors using Machine
Learning. In Proceedings of the 38th Annual Computer Security Applications Con-
ference. 171–185.

[8] Simon Bell and Peter Komisarczuk. 2020. An Analysis of Phishing Blacklists:
Google Safe Browsing, OpenPhish, and PhishTank. In Proceedings of the Aus-
tralasian Computer Science Week Multiconference. 1–11.

[9] Bitaab. 2023. BEYOND PHISH: Toward Detecting Fraudulent e-Commerce Web-
sites at Scale. In S and P.

[10] Marzieh Bitaab, Haehyun Cho, Adam Oest, Penghui Zhang, Zhibo Sun, Rana
Pourmohamad, Doowon Kim, Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili,
Adam Doupé, and Gail-Joon Ahn. 2020. Scam Pandemic: How Attackers Exploit
Public Fear through Phishing. In 2020 APWG Symposium on Electronic Crime
Research (eCrime).

[11] AJ Burns, M Eric Johnson, and Deanna D Caputo. 2019. Spear phishing in a
barrel: Insights from a targeted phishing campaign. Journal of Organizational
Computing and Electronic Commerce 29, 1 (2019), 24–39.

[12] Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng.
2020. Phishing scams detection in ethereum transaction network. ACM Transac-
tions on Internet Technology (TOIT) 21, 1 (2020), 1–16.

[13] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326–344.

[14] Tom Chothia, Stefan-Ioan Paiu, and Michael Oultram. 2018. Phishing attacks:
Learning by doing. In 2018 USENIX Workshop on Advances in Security Education
(ASE 18).

[15] Cisco Talos Intelligence Group. 2023. PhishTank: Phishing URL data-set operated
by Cisco Talos Intelligence Group. https://phishtank.com. (2023). Accessed on
April 20, 2023.

[16] Rachna Dhamija, J Doug Tygar, and Marti Hearst. 2006. Why phishing works.
In Proceedings of the SIGCHI conference on Human Factors in computing systems.
581–590.

[17] Matt Dixon, James Nicholson, Dawn Branley-Bell, Pam Briggs, and Lynne Coven-
try. 2022. Holding your hand on the danger Button: observing user phish detection
strategies across Mobile and desktop. Proceedings of the ACM on human-computer
interaction 6, MHCI (2022), 1–22.

[18] Ronald C Dodge Jr, Curtis Carver, and Aaron J Ferguson. 2007. Phishing for user
security awareness. computers & security 26, 1 (2007), 73–80.

[19] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve been warned:
an empirical study of the effectiveness of web browser phishing warnings. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1065–1074.

[20] Google. 2020. Google Chrome Privacy Whitepaper. https://www.google.com/
chrome/privacy/whitepaper.html. (2020).

[21] Google. accessed May 4, 2023. Google Safe Browsing Transparency Report.
https://safebrowsing.google.com/. (accessed May 4, 2023).

[22] Google. accessed May 4, 2023. Safe Browsing APIs (v4). https://developers.google.
com/safe-browsing/v4/. (accessed May 4, 2023).

[23] Brij B Gupta, Nalin AG Arachchilage, and Kostas E Psannis. 2018. Defending
against phishing attacks: taxonomy of methods, current issues and future direc-
tions. Telecommunication Systems 67, 2 (2018), 247–267.

[24] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2016. Phisheye: Live Monitoring
of Sandboxed Phishing Kits. (2016), 1402–1413 pages.

[25] Shuang Hao, Matthew Thomas, Vern Paxson, Nick Feamster, Christian Kreibich,
Chris Grier, and Scott Hollenbeck. 2013. Understanding the domain registra-
tion behavior of spammers. In Proceedings of the 2013 conference on Internet
measurement conference. 63–76.

[26] Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson, Stefan
Savage, Geoffrey M Voelker, and David Wagner. 2019. Detecting and characteriz-
ing lateral phishing at scale. In 28th USENIX security symposium (USENIX security
19). 1273–1290.

[27] Thorsten Holz, Markus Engelberth, and Felix Freiling. 2009. Learning more
about the underground economy: A case-study of keyloggers and dropzones. In
European Symposium on Research in Computer Security. Springer, 1–18.

[28] Jason Hong. 2012. The state of phishing attacks. Commun. ACM 55, 1 (2012),
74–81.

[29] Hang Hu, Steve TK Jan, Yang Wang, and Gang Wang. 2021. Assessing Browser-
level Defense against {IDN-based} Phishing. In 30th USENIX Security Symposium
(USENIX Security 21). 3739–3756.

[30] Weiwei Hu and Ying Tan. 2017. Black-box attacks against RNN based malware
detection algorithms. arXiv preprint arXiv:1705.08131 (2017).

[31] Huajun Huang, Shaohong Zhong, and Junshan Tan. 2009. Browser-side counter-
measures for deceptive phishing attack. In 2009 Fifth International Conference on
Information Assurance and Security, Vol. 1. IEEE, 352–355.

[32] Federal Bureau Of Investigation. 2018. Business E-mail Compromise The 12
Billion Dollar Scam. (2018).

[33] Amir Kashapov, Tingmin Wu, Sharif Abuadbba, and Carsten Rudolph. 2022.
Email summarization to assist users in phishing identification. In Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications Security.
1234–1236.

[34] Taeri Kim, Noseong Park, Jiwon Hong, and Sang-Wook Kim. 2022. Phishing
URL Detection: A Network-based Approach Robust to Evasion. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
1769–1782.

[35] Taeri Kim, Noseong Park, Jiwon Hong, and Sang-Wook Kim. 2022. Phishing
URL Detection: A Network-based Approach Robust to Evasion. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
1769–1782.

[36] Brian Kondracki, Babak Amin Azad, Oleksii Starov, and Nick Nikiforakis. 2021.
Catching transparent phish: Analyzing and detecting MITM phishing toolkits. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 36–50.

[37] Daniele Lain, Kari Kostiainen, and Srdjan Čapkun. 2022. Phishing in organiza-
tions: Findings from a large-scale and long-term study. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 842–859.

[38] Pavel Laskov et al. 2014. Practical evasion of a learning-based classifier: A case
study. In 2014 IEEE symposium on security and privacy. IEEE, 197–211.

[39] Jehyun Lee, Pingxiao Ye, Ruofan Liu, Dinil Mon Divakaran, and Mun Choon
Chan. 2020. Building robust phishing detection system: an empirical analysis.
NDSS MADWeb (2020).

[40] Yusi Lei, Sen Chen, Lingling Fan, Fu Song, and Yang Liu. 2020. Advanced Evasion
Attacks and Mitigations on Practical ML-Based Phishing Website Classifiers.
arXiv preprint arXiv:2004.06954 (2020).

[41] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and Gang Yang. 2016. Cracking
classifiers for evasion: a case study on the google’s phishing pages filter. In
Proceedings of the 25th International Conference on World Wide Web. 345–356.

[42] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen
Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. 2021. Phishpedia: A hybrid deep
learning based approach to visually identify phishing webpages. In 30th USENIX
Security Symposium (USENIX Security 21). 3793–3810.

[43] Zane Ma, Joshua Reynolds, Joseph Dickinson, Kaishen Wang, Taylor Judd,
Joseph D Barnes, Joshua Mason, and Michael Bailey. 2019. The impact of secure
transport protocols on phishing efficacy. In 12th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 19).

[44] Samuel Marchal, Giovanni Armano, Tommi Gröndahl, Kalle Saari, Nidhi Singh,
and N Asokan. 2017. Off-the-hook: An efficient and usable client-side phishing
prevention application. IEEE Trans. Comput. 66, 10 (2017), 1717–1733.

[45] AbdelKarim Mardini. 2019. Better password protections in Chrome. https:
//blog.google/products/chrome/better-password-protections. (Dec 2019).

https://docs.apwg.org/reports/apwg_trends_report_q3_2022.pdf
https://phishtank.com
https://www.google.com/chrome/privacy/whitepaper.html
https://www.google.com/chrome/privacy/whitepaper.html
https://safebrowsing.google.com/
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/
https://blog.google/products/chrome/better-password-protections
https://blog.google/products/chrome/better-password-protections

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

[46] Noman Mazher, Imran Ashraf, and Ayesha Altaf. 2013. Which web browser work
best for detecting phishing. In 2013 5th International Conference on Information
and Communication Technologies. IEEE, 1–5.

[47] Heather McCalley, Brad Wardman, and Gary Warner. 2011. Analysis of back-
doored phishing kits. In IFIP International Conference on Digital Forensics. Springer,
155–168.

[48] D Kevin McGrath and Minaxi Gupta. 2008. Behind Phishing: An Examination of
Phisher Modi Operandi. LEET 8 (2008), 4.

[49] Microsoft. accessed May 4, 2023. Microsoft Defender SmartScreen Overview.
https://docs.microsoft.com/en-us/windows/security/threat-protection/
microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview.
(accessed May 4, 2023).

[50] Akihito Nakamura and Fuma Dobashi. 2019. Proactive phishing sites detection.
In IEEE/WIC/ACM International Conference on Web Intelligence. 443–448.

[51] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. Phishfarm: A scalable framework for measuring the effec-
tiveness of evasion techniques against browser phishing blacklists. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1344–1361.

[52] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. PhishTime: Continuous longitudinal
measurement of the effectiveness of anti-phishing blacklists. In 29th {USENIX}
Security Symposium ({USENIX} Security 20). 379–396.

[53] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. {PhishTime}: Continuous longitudinal
measurement of the effectiveness of anti-phishing blacklists. In 29th USENIX
Security Symposium (USENIX Security 20). 379–396.

[54] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In 2018 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 1–12.

[55] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to Sunset: Analyz-
ing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale. In
29th {USENIX} Security Symposium ({USENIX} Security 20).

[56] Thomas Kobber Panum, Kaspar Hageman, René Rydhof Hansen, and Jens Myrup
Pedersen. 2020. Towards Adversarial Phishing Detection. In 13th {USENIX}
Workshop on Cyber Security Experimentation and Test ({CSET} 20).

[57] Vasilii Sukhanov Patrick Nepper, Kiran C. Nair and Varun Khaneja. 2019. Better
password protections in Chrome - How it works. https://security.googleblog.
com/2019/12/better-password-protections-in-chrome.html. (Dec 2019).

[58] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath, and Gang Wang.
2019. What happens after you leak your password: Understanding credential
sharing on phishing sites. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 181–192.

[59] Nikolas Pilavakis, Adam Jenkins, Nadin Kökciyan, and Kami Vaniea. 2023. “I
didn’t click”: What users say when reporting phishing. In Symposium on Usable
Security and Privacy (USEC) 2023. The Internet Society, 1–13.

[60] Benjamin Reinheimer, Lukas Aldag, Peter Mayer, Mattia Mossano, Reyhan
Duezguen, Bettina Lofthouse, Tatiana Von Landesberger, and Melanie Volka-
mer. 2020. An investigation of phishing awareness and education over time:
When and how to best remind users. In Sixteenth Symposium on Usable Privacy
and Security (SOUPS 2020). 259–284.

[61] Yakov Rekhter, Robert Moskowitz, Daniel Karrenberg, Geert Jan de Groot, and
Eliot Lear. 1996. Address Allocation for Private Internets. RFC 1918. RFC Editor.
1–9 pages. https://datatracker.ietf.org/doc/html/rfc1918

[62] Bushra Sabir, M Ali Babar, and Raj Gaire. 2020. An Evasion Attack against
ML-based Phishing URL Detectors. arXiv preprint arXiv:2005.08454 (2020).

[63] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 acm sigsac conference on computer and communications
security. 1528–1540.

[64] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Cranor, Jason Hong, and
Chengshan Zhang. 2009. An empirical analysis of phishing blacklists. (2009).

[65] Hossein Siadati, Sean Palka, Avi Siegel, and Damon McCoy. 2017. Measuring the
effectiveness of embedded phishing exercises. In 10th USENIX workshop on cyber
security experimentation and test (CSET 17).

[66] Aditya K Sood and Richard J Enbody. 2013. Crimeware-as-a-service—a survey of
commoditized crimeware in the underground market. International Journal of
Critical Infrastructure Protection 6, 1 (2013), 28–38.

[67] StatCounter Global Stats. 2020. Desktop vs Mobile vs Tablet Market Share
Worldwide. https://gs.statcounter.com/platform-market-share/desktop-mobile-
tablet/worldwide. (2020).

[68] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. 2009. Crying Wolf: An Empirical Study of SSL Warning Effectiveness..
In USENIX security symposium. Montreal, Canada, 399–416.

[69] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz, and Vern Paxson. 2013.
Trafficking fraudulent accounts: The role of the underground market in Twitter
spam and abuse. In 22nd {USENIX} Security Symposium ({USENIX} Security 13).

195–210.
[70] Nikolaos Tsalis, Nikos Virvilis, Alexios Mylonas, T Apostolopoulos, and Dimitris

Gritzalis. 2014. Browser blacklists: the Utopia of phishing protection. In Interna-
tional Conference on E-Business and Telecommunications. Springer, 278–293.

[71] Güliz Seray Tuncay, Jingyu Qian, and Carl A Gunter. 2020. See no evil: phishing
for permissions with false transparency. In 29th USENIX Security Symposium
(USENIX Security 20). 415–432.

[72] Amber Van Der Heijden and Luca Allodi. 2019. Cognitive triaging of phishing
attacks. In 28th USENIX Security Symposium (USENIX Security 19). 1309–1326.

[73] Nikos Virvilis, Nikolaos Tsalis, Alexios Mylonas, and Dimitris Gritzalis. 2014.
Mobile devices: A phisher’s paradise. In 2014 11th International Conference on
Security and Cryptography (SECRYPT). IEEE, 1–9.

[74] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-scale automatic
classification of phishing pages. (2010).

[75] Chuan Yue and Haining Wang. 2008. Anti-phishing in offense and defense. In
2008 Annual Computer Security Applications Conference (ACSAC). IEEE, 345–354.

[76] Penghui Zhang, Adam Oest, Haehyun Cho, RC Johnson, Brad Wardman, Shaown
Sarker, Alexandros Kpravelos, Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili,
Adam Doupé, and Gail-Joon Ahn. 2021. CrawlPhish: Large-scale Analysis of
Client-side Cloaking Techniques in Phishing. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (Oakland).

[77] Penghui Zhang, Zhibo Sun, Sukwha Kyung, Hans Walter Behrens, Zion Leon-
ahenahe Basque, Haehyun Cho, Adam Oest, Ruoyu Wang, Tiffany Bao, Yan
Shoshitaishvili, et al. 2022. I’m SPARTACUS, No, I’m SPARTACUS: Proactively
Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 3165–3179.

A APPENDIX

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://security.googleblog.com/2019/12/better-password-protections-in-chrome.html
https://security.googleblog.com/2019/12/better-password-protections-in-chrome.html
https://datatracker.ietf.org/doc/html/rfc1918
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide

Deep Dive into Client-Side Anti-Phishing ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Feature Brower features Description of the features

History features

kUrlHistoryVisitCount Number of visits to that URL stored in the browser history
kUrlHistoryTypedCount Number of times the URL was typed in the Omnibox
kUrlHistoryLinkCount Number of times the URL was reached by clicking a link
kUrlHistoryVisitCountMoreThan24hAgo Number of times URL was visited more than 24h ago
kHttpHostVisitCount Number of user-visible visits to all URLs on the same host/port as

the URL for HTTP and HTTPSkHttpsHostVisitCount
kFirstHttpHostVisitMoreThan24hAgo Boolean feature which is true if the host was visited for the first

time more than 24h ago (only considers user-visible visits)kFirstHttpsHostVisitMoreThan24hAgo

Browse features

kHostPrefix prefixes appended to features that tell for which page type
the feature pertains

kReferrer Referrer
kHasSSLReferrer True if the referrer was stripped because it is an SSL referrer
kPageTransitionType Stores the page transition
kIsFirstNavigation True if this navigation is the first for this tab

kRedirectUrlMismatch Feature that is set if the URL from the navigation entry doesn’t match
the URL at the end of the redirect chain

kRedirect The redirect chain that leads to the named page

kSecureRedirectValue If a redirect is SSL, we will use this value instead of the actual redirect
so we don’t leak any SSL websites

kHttpStatusCode The HTTP status code for the main document
kSafeBrowsingMaliciousUrl

Fields from the UnsafeResource if there is anykSafeBrowsingOriginalUrl
kSafeBrowsingIsSubresource
kSafeBrowsingThreatType

Table 6: Browser features are the features that content-based anti-phishing extracts if the classifier has scored more than the
threshold and detects the website as a phishing website. Content-based anti-phishing extracts these features and adds to the
request that it sends to the server to run the server-side classification on the suspected website.

DOM feature type Model DOM features Page DOM features

DOM HTML
form features

PageHasForms Page has any form element

PageActionOtherDomainFreq
The fraction of form elements whose “action" attribute
point URL on a different domain

PageActionURL
The token feature containing each URL
that an “action" attribute points to

PageHasTextInputs The page has any input type=“text" element
PageHasPswdInputs The page has any input type=“password" element
PageHasRadioInputs The page has any input type=“radio" element
PageHasCheckInputs The page has any input type=“checkbox" element

DOM HTML
link features

PageExternalLinksFreq The fraction of links on the page that point~ to other domains
PageLinkDomain The token feature containing each external domain that is linked to
PageSecureLinksFreq The fraction of links on the page that use HTTPS

DOM HTML
script features

PageNumScriptTagsGTOne The number of script elements on the page is greater than 1?
PageNumScriptTagsGTSix The number of script elements on the page is greater than 6?

Other DOM
HTML features PageImgOtherDomainFreq

The fraction of images whose source attribute
points to an external domain

Table 7: DOM features. Content-based classifier uses the content of the visited website to evaluate its phishy-ness. It extracts
the features from the website, creates a feature map, and computes the phishy-ness score based on the model’s rules’ features
and their weights.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Pourmohamad et al.

BL Performance
Metrics Description

Discovery
blocklist’s ability to identify
new suspected URLs

Detection Coverage
The proportion of the discovered
URLs that are correctly blocklisted
at any point

Speed
The time delay between
discovery and blocklisting

Table 8: Blocklisting evaluation metrics [52].

	Abstract
	1 Introduction
	2 Background
	3 Chrome Client-side Anti-phishing
	3.1 Client-side Anti-phishing Classification
	3.2 Real-time Anti-phishing

	4 Classifier Evaluation
	4.1 Longitudinal Model Drift
	4.2 Exploring Failures in Client-Side Detection Beyond Classifiers

	5 Evaluation of Client-side Effect on Blocklisting
	5.1 Methodology
	5.2 Blocklist Experiments
	5.3 Effectiveness of Real-time Anti-phishing

	6 Academic Works: A Five-Year Review
	7 Discussion
	7.1 Limitations
	7.2 Disclosure

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Appendix

